Terahertz conductivity of twisted bilayer graphene.

نویسندگان

  • Xingquan Zou
  • Jingzhi Shang
  • Jianing Leaw
  • Zhiqiang Luo
  • Liyan Luo
  • Chan La-o-Vorakiat
  • Liang Cheng
  • S A Cheong
  • Haibin Su
  • Jian-Xin Zhu
  • Yanpeng Liu
  • Kian Ping Loh
  • A H Castro Neto
  • Ting Yu
  • Elbert E M Chia
چکیده

Using terahertz time-domain spectroscopy, the real part of optical conductivity [σ(1)(ω)] of twisted bilayer graphene was obtained at different temperatures (10-300 K) in the frequency range 0.3-3 THz. On top of a Drude-like response, we see a strong peak in σ(1)(ω) at ~2.7 THz. We analyze the overall Drude-like response using a disorder-dependent (unitary scattering) model, then attribute the peak at 2.7 THz to an enhanced density of states at that energy, which is caused by the presence of a van Hove singularity arising from a commensurate twisting of the two graphene layers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermal conductivity of twisted bilayer graphene.

We have investigated experimentally the thermal conductivity of suspended twisted bilayer graphene. The measurements were performed using an optothermal Raman technique. It was found that the thermal conductivity of twisted bilayer graphene is lower than that of monolayer graphene and the reference, Bernal stacked bilayer graphene in the entire temperature range examined (∼300-700 K). This find...

متن کامل

Extracting the complex optical conductivity of mono- and bilayer graphene by ellipsometry

Articles you may be interested in Terahertz, optical, and Raman signatures of monolayer graphene behavior in thermally reduced graphene oxide films J. Terahertz transmission and sheet conductivity of randomly stacked multi-layer graphene Appl. Optical investigation of reduced graphene oxide by spectroscopic ellipsometry and the band-gap tuning Appl.

متن کامل

Enhanced optical conductivity of bilayer graphene nanoribbons in the terahertz regime.

We reveal that there exists a class of graphene structures (a subclass of bilayer graphene nanoribbons) which has an exceptionally strong optical response in the terahertz (THz) and far infrared (FIR) regime. The peak conductance of THz/FIR active bilayer ribbons is around 2 orders of magnitude higher than the universal conductance of sigma(0) = e(2)/4variant Planck's over 2pi observed in graph...

متن کامل

Transmission Properties of the Periodic Structures Based on Graphene Nonlinear Optical Conductivity in a Terahertz Field

By developing the terahertz (THz) technology, in addition to generators and detectors of THz waves, the existence of some tools such as modulators and filters are needed. THz filters are important tools for various applications in the field of chemical and biological sensors. Linear and nonlinear optical properties of the graphene have attracted lots of attention. In fact graphene exhibits vari...

متن کامل

Conduction coefficient modeling in bilayer graphene based on schottky transistors

Nowadays carbon nanoparticles are applied on the island of single electron transistor and Nano-transistors. The basis of single electron devices (SEDs) is controllable single electron transfer between small conducting islands. Based on the important points in quantum mechanics, when a wave passes through several spatial regions with different boundaries, the wave function of the first region di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 110 6  شماره 

صفحات  -

تاریخ انتشار 2013